An Improved a Priori Error Analysis for Finite Element Approximations of Signorini's Problem
نویسندگان
چکیده
منابع مشابه
An Improved a Priori Error Analysis for Finite Element Approximations of Signorini's Problem
The present paper is concerned with the unilateral contact model in linear elastostatics (or the equivalent scalar Signorini problem). A standard continuous conforming linear finite element approximation is first chosen to approach the two-dimensional problem. We develop a new error analysis in the H-norm using estimates on Poincaré constants with respect to the size of the areas of the noncont...
متن کاملA Priori Finite Element Error Analysis for Optimal Control of the Obstacle Problem
An optimal control problem governed by an unilateral obstacle problem is considered. The problem is discretzed by using linear finite elements for the state and the obstacle and a variational discrete approach for the control. Based on strong stationarity and a quadratic growth condition we establish a priori error estimates which turn out to be quasi-optimal under additional assumptions on the...
متن کاملA Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem
The pseudostress-velocity formulation of the stationary Stokes problem allows a Raviart-Thomas mixed finite element formulation with quasi-optimal convergence and some superconvergent reconstruction of the velocity. This local postprocessing gives rise to some averaging a posteriori error estimator with explicit constants for reliable error control. Standard residual-based explicit a posteriori...
متن کاملA Priori Error Estimates for Mixed Finite Element Approximations of the Acoustic Wave Equation
In this paper we derive optimal a priori L∞(L2) error estimates for mixed finite element displacement formulations of the acoustic wave equation. The computational complexity of this approach is equivalent to the traditional mixed finite element formulations of the second order hyperbolic equations in which the primary unknowns are pressure and the gradient of pressure. However, the displacemen...
متن کاملAn a posteriori error estimate for finite element approximations of a singularly perturbed advection-diffusion problem
In this paper the author presents an a posteriori error estimator for approximations of the solution to an advectiondiffusion equation with a non-constant, vector-valued diffusion coefficient e in a conforming finite element space. Based on the complementary variational principle, we show that the error of an approximate solution in an associated energy norm is bounded by the sum of the weighte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2012
ISSN: 0036-1429,1095-7170
DOI: 10.1137/110857593